DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor.

نویسندگان

  • Hung Chang
  • Bala Murali Venkatesan
  • Samir M Iqbal
  • G Andreadakis
  • F Kosari
  • G Vasmatzis
  • Dimitrios Peroulis
  • Rashid Bashir
چکیده

Reports of DNA translocation measurements have been increasing rapidly in recent years due to advancements in pore fabrication and these measurements continue to provide insight into the physics of DNA translocations through MEMS based solid state nanopores. Specifically, it has recently been demonstrated that in addition to typically observed current blockages, enhancements in current can also be measured under certain conditions. Here, we further demonstrate the power of these nanopores for examining single DNA molecules by measuring these ionic currents as a function of the applied electric field and show that the direction of the resulting current pulse can provide fundamental insight into the physics of condensed counterions and the dipole saturation in single DNA molecules. Expanding on earlier work by Manning and others, we propose a model of DNA counterion ionic current and saturation of this current based on our experimental results. The work can have broad impact in understanding DNA sensing, DNA delivery into cells, DNA conductivity, and molecular electronics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulating DNA translocation through functionalized soft nanopores.

Nanopores have emerged as promising next-generation devices for DNA sequencing technology. The two major challenges in such devices are: (i) find an efficient way to raise the DNA capture rate prior to funnelling a nanopore, and (ii) reduce the translocation velocity inside it so that single base resolution can be attained efficiently. To achieve these, a novel soft nanopore comprising a solid-...

متن کامل

Dynamics of DNA translocation in a solid-state nanopore immersed in aqueous glycerol.

Nanopore-based technologies have attracted much attention recently for their promising use in low-cost and high-throughput genome sequencing. To achieve single-base resolution of DNA sequencing, it is critical to slow and control the translocation of DNA, which has been achieved in a protein nanopore but not yet in a solid-state nanopore. Using all-atom molecular dynamics simulations, we invest...

متن کامل

Slowing down DNA translocation through a nanopore in lithium chloride.

The charge of a DNA molecule is a crucial parameter in many DNA detection and manipulation schemes such as gel electrophoresis and lab-on-a-chip applications. Here, we study the partial reduction of the DNA charge due to counterion binding by means of nanopore translocation experiments and all-atom molecular dynamics (MD) simulations. Surprisingly, we find that the translocation time of a DNA m...

متن کامل

DNA sequence-dependent ionic currents in ultra-small solid-state nanopores.

Measurements of ionic currents through nanopores partially blocked by DNA have emerged as a powerful method for characterization of the DNA nucleotide sequence. Although the effect of the nucleotide sequence on the nanopore blockade current has been experimentally demonstrated, prediction and interpretation of such measurements remain a formidable challenge. Using atomic resolution computationa...

متن کامل

Nanopore sensing of individual transcription factors bound to DNA

Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information abou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical microdevices

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 2006